14 research outputs found

    Application of nonlinear feedback control theory to supermaneuverable aircraft

    Get PDF
    Controlled flight at extremely high angles of attack, far exceeding the stall angle, and/or at high angular rates is sometimes referred to as supermaneuvering flight. The objective was to examine methods for design of control laws for aircraft performing supermaneuvers. Since the equations which govern the motion of aircraft during supermaneuvers are nonlinear, this study concentrated on nonlinear control law design procedures. The two nonlinear techniques considered were Nonlinear Quadratic Regulator (NLQR) theory and nonlinear dynamic inversion. A conventional gain scheduled proportional plus integral (P + I) controller was also developed to serve as a baseline design typical of current control laws used in aircraft. A mathematical model of a generic supermaneuverable aircraft was developed from data obtained from the literature. A detailed computer simulation of the aircraft was also developed. This simulation allowed the flying of proposed supermaneuvers and was used to evaluate the performance of the control law designs and to generate linearized models of the aircraft at different flight conditions

    A concept for adaptive performance optimization on commercial transport aircraft

    Get PDF
    An adaptive control method is presented for the minimization of drag during flight for transport aircraft. The minimization of drag is achieved by taking advantage of the redundant control capability available in the pitch axis, with the horizontal tail used as the primary surface and symmetric deflection of the ailerons and cruise flaps used as additional controls. The additional control surfaces are excited with sinusoidal signals, while the altitude and velocity loops are closed with guidance and control laws. A model of the throttle response as a function of the additional control surfaces is formulated and the parameters in the model are estimated from the sensor measurements using a least squares estimation method. The estimated model is used to determine the minimum drag positions of the control surfaces. The method is presented for the optimization of one and two additional control surfaces. The adaptive control method is extended to optimize rate of climb with the throttle fixed. Simulations that include realistic disturbances are presented, as well as the results of a Monte Carlo simulation analysis that shows the effects of changing the disturbance environment and the excitation signal parameters

    Control of Plants with Input Saturation Nonlinearities

    Get PDF
    This paper considers control design for systems with input magnitude saturation. Four examples, 2 SISO and 2 MIMO, are used to illustrate the properties of several existing schemes. A new method based on a modification of conventional antiwindup compensation is introduced. It is assumed that the reader is familiar with the problem of integral windup for saturating plants and conventional schemes for dealing with it

    Multi-application controls: Robust nonlinear multivariable aerospace controls applications

    Get PDF
    This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented as a method for analyzing robust performance and the mu-synthesis method will be presented as a method for synthesizing a robust control system. The paper concludes with the author's expectations regarding future applications of robust nonlinear multivariable controls

    Control of Plants with Input Saturation Nonlinearities

    Get PDF
    This paper considers control design for systems with input magnitude saturation. Four examples, 2 SISO and 2 MIMO, are used to illustrate the properties of several existing schemes. A new method based on a modification of conventional antiwindup compensation is introduced. It is assumed that the reader is familiar with the problem of integral windup for saturating plants and conventional schemes for dealing with it

    Fault tolerant LPV control of the GTM UAV with dynamic control allocation

    Get PDF
    The aim of the paper is to present a dynamic control allocation architecture for the design and development of reconfigurable and fault-tolerant control systems in aerial vehicles. The baseline control system is designed for the nominal dynamics of the aircraft, while faults and actuator saturation limits are handled by the dynamic control allocation scheme. Coordination of these components is provided by a supervisor which re-allocates control authority based on health information, flight envelope limits and cross coupling between lateral and longitudinal motion. The monitoring components and FDI filters provide the supervisor with information about different fault operations, based on that it is able to make decisions about necessary interventions into the vehicle motions and guarantee fault-tolerant operation of the aircraft. The design of the proposed reconfigurable control algorithm is based on Linear Parameter-varying (LPV) control methods that uses a parameter dependent dynamic control allocation scheme. The design is demonstrated on the lateral axis motion of the NASA AirSTAR Flight Test Vehicle simulation model

    Control Allocation and Zero Dynamics

    No full text
    corecore